Transcriptional complexity and roles of Fra-1/AP-1 at the uPA/Plau locus in aggressive breast cancer
نویسندگان
چکیده
Plau codes for the urokinase-type plasminogen activator (uPA), critical in cancer metastasis. While the mechanisms driving its overexpression in tumorigenic processes are unknown, it is regulated by the AP-1 transcriptional complex in diverse situations. The AP-1 component Fra-1 being overexpressed in aggressive breast cancers, we have addressed its role in the overexpression of Plau in the highly metastatic breast cancer model cell line MDA-MB231 using ChIP, pharmacological and RNAi approaches. Plau transcription appears controlled by 2 AP-1 enhancers located -1.9 (ABR-1.9) and -4.1 kb (ABR-4.1) upstream of the transcription start site (TSS) of the uPA-coding mRNA, Plau-001, that bind Fra-1. Surprisingly, RNA Pol II is not recruited only at the Plau-001 TSS but also upstream in the ABR-1.9 and ABR-4.1 region. Most Pol II molecules transcribe short and unstable RNAs while tracking down toward the TSS, where there are converted into Plau-001 mRNA-productive species. Moreover, a minority of Pol II molecules transcribes a low abundance mRNA of unknown function called Plau-004 from the ABR-1.9 domain, whose expression is tempered by Fra-1. Thus, we unveil a heretofore-unsuspected transcriptional complexity at Plau in a reference metastatic breast cancer cell line with pleiotropic effects for Fra-1, providing novel information on AP-1 transcriptional action.
منابع مشابه
Genome-wide profiling of AP-1-regulated transcription provides insights into the invasiveness of triple-negative breast cancer.
Triple-negative breast cancer (TNBC) is an aggressive clinical subtype accounting for up to 20% of all breast cancers, but its malignant determinants remain largely undefined. Here, we show that in TNBC the overexpression of Fra-1, a component of the transcription factor AP-1, offers prognostic potential. Fra-1 depletion or its heterodimeric partner c-Jun inhibits the proliferative and invasive...
متن کاملTumor and Stem Cell Biology Genome-wide Profiling of AP-1–Regulated Transcription Provides Insights into the Invasiveness of Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC) is an aggressive clinical subtype accounting for up to 20% of all breast cancers, but its malignant determinants remain largely undefined. Here, we show that in TNBC the overexpression of Fra-1, a component of the transcription factor AP-1, offers prognostic potential. Fra-1 depletion or its heterodimeric partner c-Jun inhibits the proliferative and invasive...
متن کاملSelective participation of c-Jun with Fra-2/c-Fos promotes aggressive tumor phenotypes and poor prognosis in tongue cancer
Tongue squamous cell carcinoma (TSCC) is most aggressive head and neck cancer often associated with HR-HPV infection. The role of AP-1 which is an essential regulator of HPV oncogene expression and tumorigenesis is not reported in tongue cancer. One hundred tongue tissue biopsies comprising precancer, cancer and adjacent controls including two tongue cancer cell lines were employed to study the...
متن کاملFra-1 is a key driver of colon cancer metastasis and a Fra-1 classifier predicts disease-free survival.
Fra-1 (Fos-related antigen-1) is a member of the AP-1 (activator protein-1) family of transcription factors. We previously showed that Fra-1 is necessary for breast cancer cells to metastasize in vivo, and that a classifier comprising genes that are expressed in a Fra-1-dependent fashion can predict breast cancer outcome. Here, we show that Fra-1 plays an important role also in colon cancer pro...
متن کاملGene Expression Changes in Pomegranate Peel Extract-Treated Triple-Negative Breast Cancer Cells
Background: Triple-negative breast cancer (TNBC) is treated with highly aggressive non-targeted chemotherapies. Safer and more effective therapeutic approaches than those currently in use are needed. Natural pomegranate peel extract (PPE) has recently been found to inhibit breast cancer progression; however, its mechanisms of action remain unclear. We hypothesized that transcriptional chan...
متن کامل